

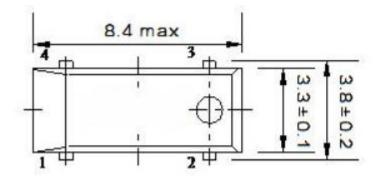
Quartz Crystal Units

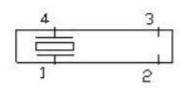
1. Specifications:

Nominal Frequency: 32.768KHz
Oscillation Mode: Fundamental
Cutting Mode: x+2° cut

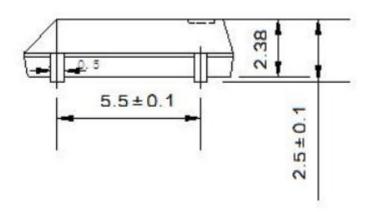
Operation Conditions:

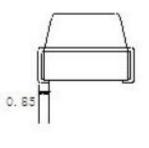
Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Operating Temperature Range	Topt	-40		85	°C	
Storage Temperature Range	Tstg	-55		125	°C	
Load Capacitance	CL	33	12.5		pF	
Drive Level	DL		0.1		uW	

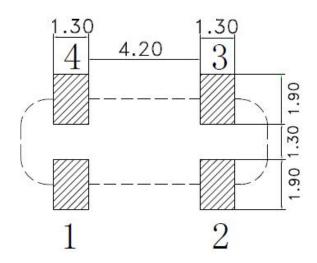

Frequency Stability:


Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Tolerance	dF/Fo	-20		20	ppm	Refer to Center Frequency@25±3℃
Stability Over Temperature	dF/F25		-0.036		ppm/°C²	Refer to Operating Temperature
Aging	dF/F25	-5		5	ppm	Per Year

Electrical Performance:


Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Equivalent Series Resistance	ESR			50	ΚΩ	@Series
Shunt Capacitance	C0			5	pF	
Insulation Resistance	IR	500			ΜΩ	@DC 100 Volt

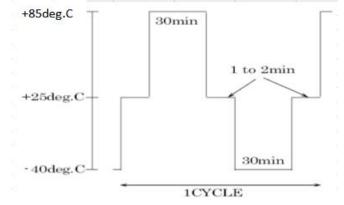

2. Dimensions:



3. Reliability characteristic:

Test Items	Test Method a	nd Condition	Requirements	
	(1) Vibration Frequency			
	(2) Vibration Amplitude	1.5mm		
Vibration	(3) Cycle Time	$1-2\min(10-55-10\text{Hz})$	Frequency Change: ± 10 ppm Max.	
	(4) Direction	X. Y. Z	Resistance Change: $\pm 15\%$ or 5 kohm Max.	
	(5)Duration	2h/each direction		
Clara ala	3 Times free drop from	Frequency Change: ± 10 ppm Max.		
Shock	board of thickness mor	ore than 30mm Resistance Change: ±15% or 5kohm M		
Hermetic seal Helium leak detector			1 (1 1 × 10 PVD/ 7) 1 1/	
	Checked:before the m	olded crystal uints	less than 1 \times 10 EXP(-7) mbar.1/sec.	

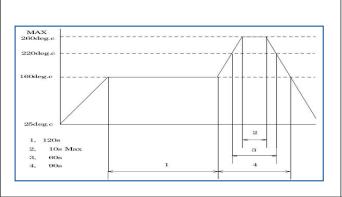
Akyga passive Page 2/4 2023-12; REV. 1



M8QC12.5PF32768KHz20B

Weldability	Dip the leads of crystal units into the solution (7-10%) of rosin $3\pm1s$, then dip into tank $5^{\sim}10S$ s. Temperature of solder melted tank is $245^{\circ}C\pm5^{\circ}C$	The dipped surface of the leads should be at least 95% covered with continuous new solder coating
High temperature	96 hours at 125℃±2℃ After being left at room temperature for 2 hours, the test is carried out.	Frequency Change: ± 10 ppm Max. Resistance Change: $\pm 25\%$ or 10 kohm Max.
Low temperature	96 hours at $-40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ After being left at room temperature for 2 hours, the test is carried out.	Frequency Change : $\pm 10 \mathrm{ppm}$ Max. Resistance Change : $\pm 15\%$ or $5 \mathrm{kohm}$ Max.
High temperature and humidity	96 hours at $60^{\circ}\text{C}\pm2^{\circ}\text{C}$, relative humidity 90-100% After being left at room temperature for 2 hours, the test is carried out.	Frequency Change: ±10ppm Max. Resistance Change: ±25% or 10kohm Max.
	After supplying the following temperature cycle	

After supplying the following temperature cycle (100 time)


Temperature cycle

Frequency Change: ± 10 ppm Max. Resistance Change: $\pm 25\%$ or 10kohm

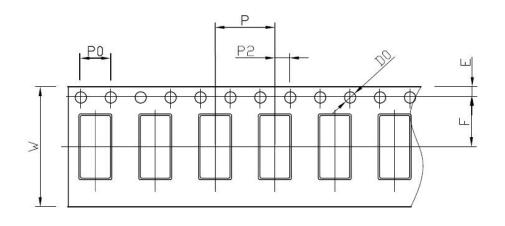
Max.

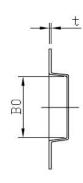
Reflow soldering

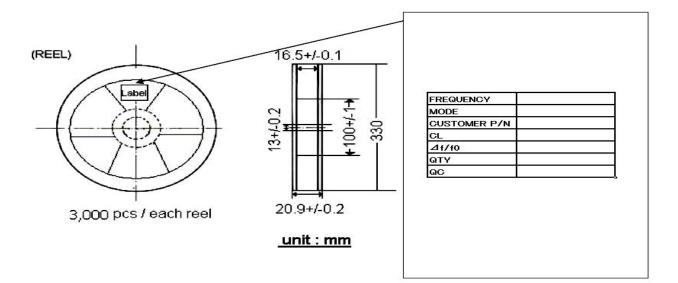
After 24h past from frequency test, Frequency Change: $\pm 10 \mathrm{ppm}$ Max.

Resistance Change: $\pm 25\%$ or $10\mathrm{kohm}$ Max.

Notice:


1. Using the infrared lamp at soldering process may cause uneven temperature rise on plastic surface of the parts, so that please keep the package temperature within left conditions.


2, DO NOT dip the plastic part into solder $% \left(1\right) =\left(1\right) \left(1\right) \left($


Akyga passive Page 3/4 2023-12; REV. 1

4. Packing

5. Disclaimer

Akyga passive reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Akyga passive or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on Akyga passive data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Akyga passive does not assume any liability arising out of the application or use of any product or circuit. Akyga passive products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Akyga passive. Customers using or selling Akyga passive components for use in such applications do so at their own risk and shall agree to fully indemnify Akyga passive and its subsidiaries harmless against all claims, damages and expenditures.

Akyga passive Page 4/4 2023-12; REV. 1