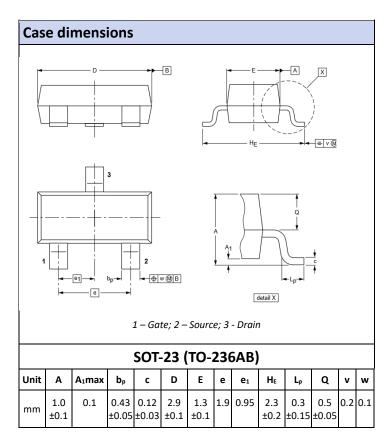


P-Channel Enhancement Mode MOSFET


Primary characteristics			
Symbol	Parameter	Value	Unit
I _D	Continuous drain current (@Ta=25°C)	4.2	А
V _{DS}	Drain source voltage	30	V

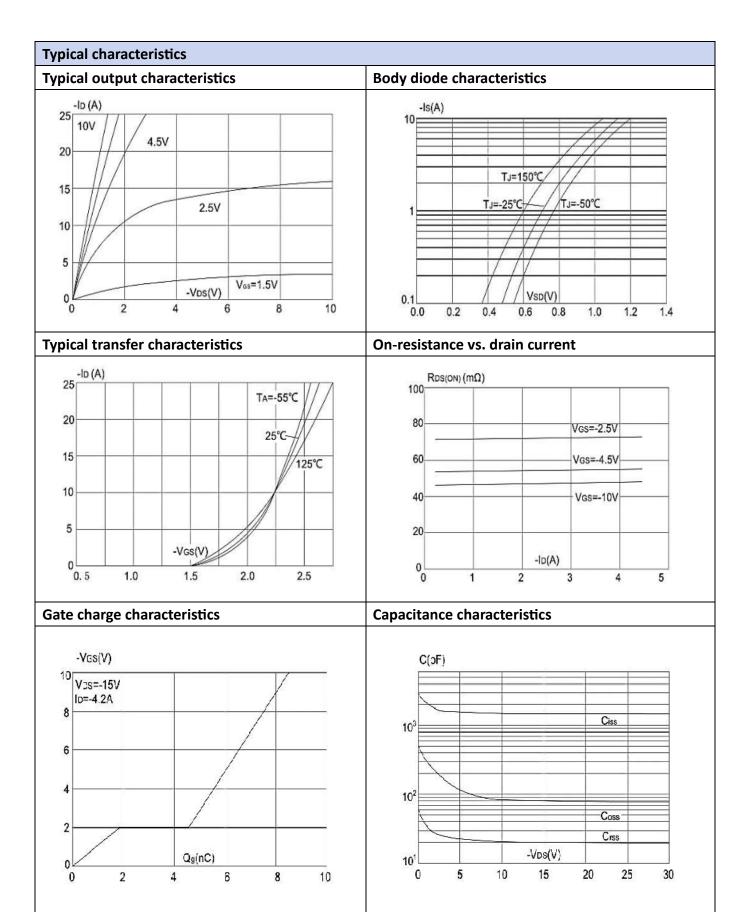
Features

- SOT-23 case for easy automatic insertion
- Pb-free and RoHS compliant

Application

- Battery protection
- Load switch
- Uninterruptable power supply

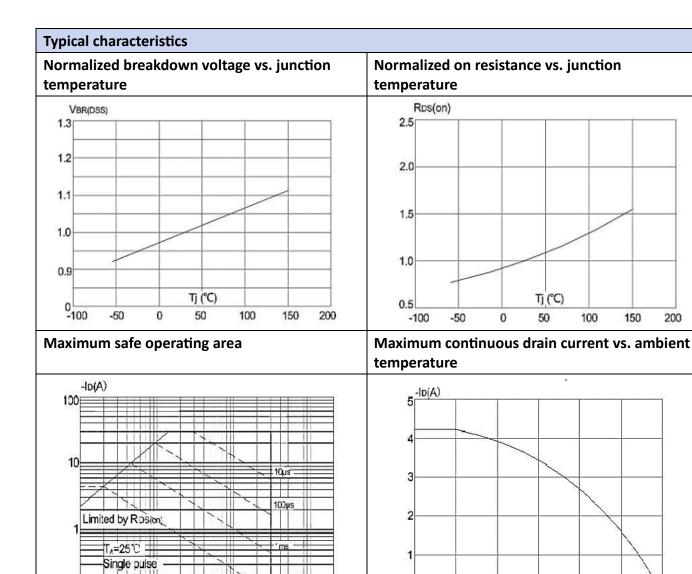
Absolute maximum ratings (T _A = 25°C unless otherwise noted)					
Characteristic		Symbol	Value	Unit	
Drain-source voltage		V _{DS}	30	V	
Gate-source voltage		V _{GS}	±12	V	
Continuous drain current	V _{GS} =10V, T _C =25°C ¹⁾		4.2		
	V _{GS} =10V, T _C =100°C ¹⁾	I _D	2.7	A	
Pulsed drain current 1)	•	I _{DM}	16.8	Α	
Power Dissipation		P _D	1.5	W	
Thermal resistance junction-ambient	1)	R _{eJA}	125	°C/W	
Thermal resistance junction-case 1)		R _{eJC}	124	°C/W	
Operating junction temperature rang	ge	T _J , T _{STG}	-55 ~ 150	°C	


Electrical characteristics (T _A = 25°C)							
Characteristic	Test condition	Symbol	Min.	Value Typ.	Max.	Unit	
Drain-source breakdown voltage	V _{GS} =0V, I _D =250μA	V _{(BR)DSS}	-30	-	-	V	
Zero gate voltage drain current	V _{DS} =30V, V _{GS} =0V	I _{DSS}	-	-	1.0	μΑ	
Gate to body leakage current	V _{GS} =±12V, V _{DS} =0V	I _{GSS}	-	-	±100	nA	
Gate threshold voltage	V _{DS} =V _{GS} , I _D =250ųA	V _{GS(TH)}	0.5	0.9	1.5	V	
	V _{GS} =10V, I _D =4.0A		-	45	55		
Static drain-source on-state resistance 3)	V _{GS} =4.5V, I _D =3.0A	R _{DS(ON)}	-	53	68	mΩ	
	V _{GS} =2.5V, I _D =1.0A		-	72	96		
Dynamic electrical characteristics							
Characteristic	Test condition	Symbol	D.d.i.e	Value		Unit	
Innut conscitones		-	Min.	Typ.	Max.		
Input capacitance	V_{DS} =15V V_{GS} =0V	Ciss	-	1500	-	nΓ	
Output capacitance Reverse transfer capacitance	f=1.0MHz	Coss	-	80	_	pF	
•	V _{DS} =15V	Crss	-	2.0 8.5	-		
Total gate charge Gate source charge	V _{DS} =13V V _{GS} =10V	Qg	-	1.8	_	nC	
Gate drain ("Miller") charge	I _D =4.2A	Q _{gs}	_	2.7		iic	
		Qga		2.7			
Switching characteristics			1	Value			
Characteristic	Test condition	Symbol	Value Min. Typ. Max.		Unit		
Turn on dolay time		+	IVIIII.	7.0	iviax.	no	
Turn on delay time Turn on rise time	V _{DS} =15V	t _{d(on)}	-	3.0	-	ns	
	V _{GS} =10V I _D =1.0A		-	20	-	ns	
Turn off delay time Turn off fall time	R _G =2.5Ω	t _{d(off)}	-	12	-	ns	
		t _f	-	12	_	ns	
Source drain diode characteristics			<u> </u>				
Characteristic	Test condition	Symbol	Min.	Value Typ.	Max.	Unit	
Maximum continuous drain to source diode forward current	-	Is	-	-	4.2	A	
Maximum pulsed drain to source diode forward current	-	I _{SM}	-	-	16.8	A	
Drain-source diode forward voltage	I _S =4.2A, V _{GS} =0V	V _{SD}	-	0.8	1.2	V	

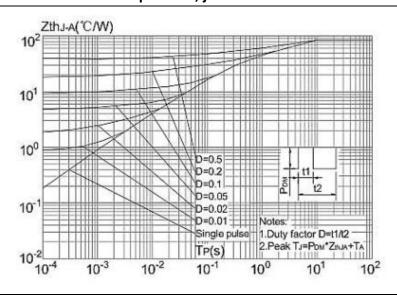
Notes:

- 1) The data tested while surface mounted on a 1 inch FR-4 board with 2oz copper
- 2) The data tested with a pulse, pulse width ≤300µs, duty cycle ≤2%
- 3) The power dissipation is limited by 150°C junction temperature
- 4) The data is theoretically the same as I_D and I_{DM}, in real applications should be limited by total power dissipation

Akyga semi Page 2/5 2023-09; REV. 1



0.1


0.1

Maximum effective transient thermal impedance, junction-to-ambient

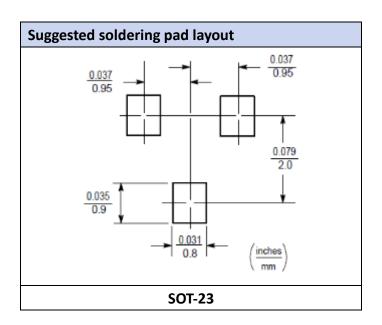
DC

100

0

25

TA (°C)


100

125

150

Ordering information			
Part Number	Package	Shipping Quantity	Dimensions
AKS3401B	SOT-23	3000 pcs / reel	

Disclaimer

Akyga semi reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Akyga semi or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on Akyga semi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Akyga semi does not assume any liability arising out of the application or use of any product or circuit. Akyga semi products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Akyga semi. Customers using or selling Akyga semi components for use in such applications do so at their own risk and shall agree to fully indemnify Akyga semi and its subsidiaries harmless against all claims, damages and expenditures.

Akyga semi Page 5/5 2023-09; REV. 1