

Features

- Low power loss by high speed switching and low on-resistance
- Excellent thermal behavior
- HBM: JESD22-A114-B: 1C
- Product validation acc. JEDEC Standard

APPLICATIONS

- PFC power supply stages
- Solar invertor
- Telecom
- Server
- UPS

Mechanical Data

- Case: TO-220AB, TO-263, ITO-220AB
- Molding Compound: UL Flammability Classification Rating 94V-0
- Terminals: Matte tin-plated leads; solderability-per MIL-STD-202, Method 208

TO-220AB TO-263 ITO-220AB

Ordering Information

Part Number	Package	Shipping Quantity	Marking Code
AKS65R190	TO-220AB	50 pcs / Tube	SJM65R190
AKS65R190B	TO-263	50 pcs / Tube or 800 pcs / Tape & Reel	SJM65R190B
AKS65R190F	ITO-220AB	50 pcs / Tube	SJM65R190F

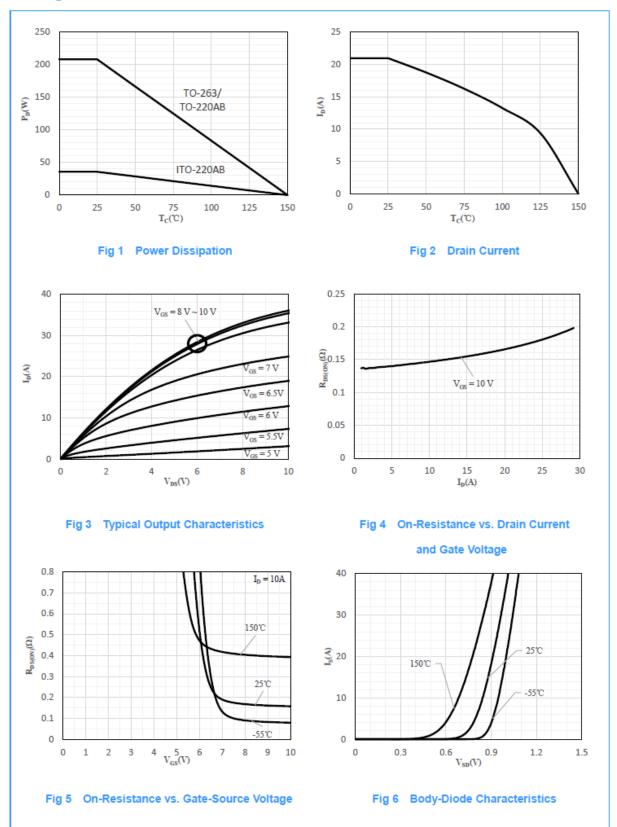
Maximum Ratings (@ Tc = 25°C unless otherwise specified)

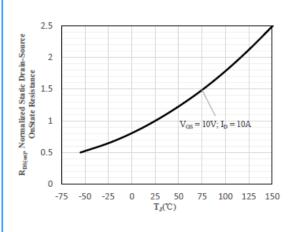
Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	650	V
Gate-to-Source Voltage	V _{GSS}	±30	V
Continuous Drain Current (T _C = 25°C)	-	21	Α
Continuous Drain Current (T _C = 100°C)	- ID	13	Α
Pulsed Drain Current (t₀ = 10μs, Tc = 25°C)	I _{DM}	84	Α
Single Pulse Avalanche Energy *2	Eas	400	mJ
Power Dissipation (TO-220AB, T _C = 25°C)		208	W
Power Dissipation (TO-263, T _C = 25°C)	PD	208	W
Power Dissipation (ITO-220AB, T _C = 25°C)		36	W
Operating Junction Temperature Range	TJ	-55 ~ + 150	°C
Storage Temperature Range	Тѕтс	-55 ~ +150	°C

Thermal Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
hermal Resistance Junction-to-Case (TO-220AB, TO-263)		-	0.5	0.6	°C/W
Thermal Resistance Junction-to-Case (ITO-220AB)		-	2.9	3.5	°C/W
Thermal Resistance Junction-to-Air (TO-220AB, TO-263)	D	-	-	62	°C/W
Thermal Resistance Junction-to-Air (ITO-220AB)	n-to-Air (ITO-220AB)		-	75	°C/W

Electrical Characteristics (@ TA = 25°C unless otherwise specified)


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Static Characteristics						
V _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = 250μA	650	-	-	٧
Ipss	Zero Gate Voltage Drain Current	V _{DS} = 650V, V _{GS} = 0V	-	-	1	μA
Igss	Gate-Body Leakage Current	V _{GS} = ±30V, V _{DS} = 0V	-	-	±100	nΑ
On Char	acteristics					
R _{DS(ON)}	Drain-Source On-resistance 11	V _{GS} = 10V, I _D = 10A	-	0.15	0.19	Ω
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.5	3.0	4.5	٧
Rg	Gate Resistance	V _{GS} = 0V, f = 1MHz	-	8.1	-	Ω
Dynamic	Characteristics					
C _{ISS}	Input Capacitance	V _{GS} = 0V	-	1292	-	
Coss	Output Capacitance	V _{DS} = 40V	-	107	-	pF
Crss	Reverse Transfer Capacitance	f = 250kHz	-	0.7	-	
Switchin	g Characteristics					
$t_{d(ON)}$	Turn-on Delay Time '3	V _{DD} = 400V	-	15	-	
t _r	Turn-on Rise Time "3	V _{GS} = 10V	-	11	-	
t _{d(OFF)}	Turn-Off Delay Time *3	I _D = 8.5A	-	71	-	ns
t _f	Turn-Off Fall Time '3	Rg = 10Ω	-	11	-	
Q _G	Total Gate-Charge	V _{DD} = 520V	-	35	-	
Q _{GS}	Gate to Source Charge	V _{GS} = 10V	-	7.5	-	nC
Q _{GD}	Gate to Drain (Miller) Charge	I _D = 11A	-	18	-	
Source-I	Orain Diode Characteristics	·				
V _{SD}	Diode Forward Voltage *1	I _{SD} = 10A, V _{GS} = 0V	-	0.84	1.2	٧
t _{rr}	Reverse Recovery Time	IF = 10A, VR = 400V	-	310	-	ns
Qrr	Reverse Recovery Charge	d _I /d _t = 100A/μs	-	3.8	-	μC


Notes:

- 1. The data tested by pulsed, pulse width \leq 300 μ s, duty cycle \leq 2%
- The E_{AS} data shows Max. rating. The test condition is V_{DD} = 100V, V_{GS} = 15V, L = 50mH

3. Guaranteed by design, not subject to production

Ratings and Characteristics Curves (@ TA = 25°C unless otherwise specified)

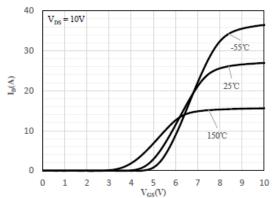
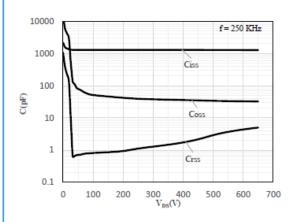



Fig 7 Normalized On-Resistance vs. Junction
Temperature

Fig 8 Transfer Characteristics

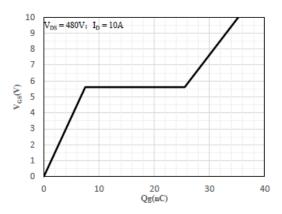
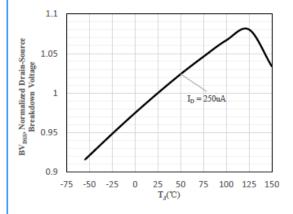



Fig 9 Capacitance Characteristics

Fig 10 Gate-Charge Characteristics

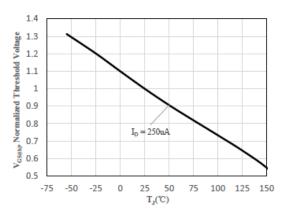
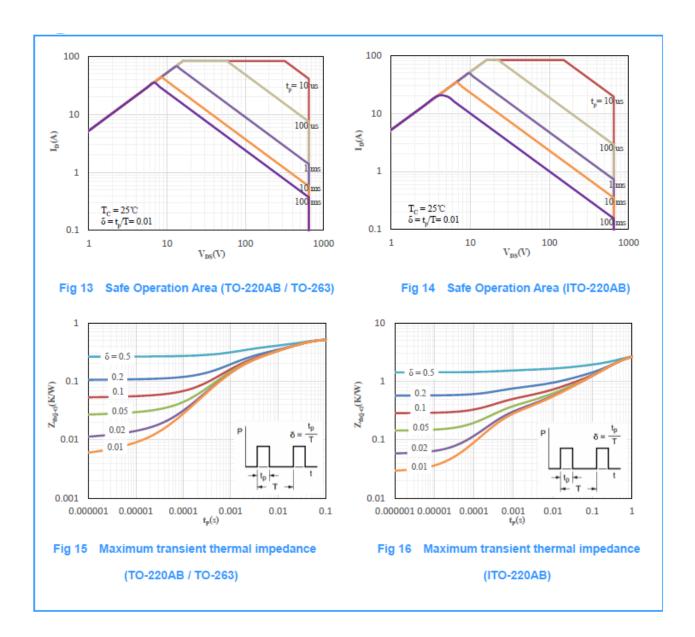
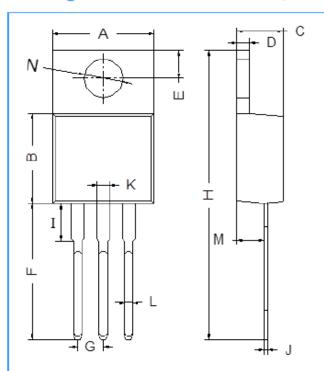
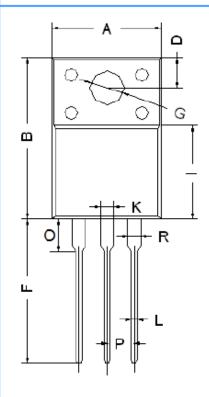
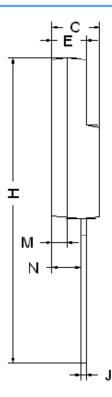



Fig 11 Normalized Breakdown Voltage

Fig 12 Normalized V_{GS(th)} vs. Junction Temperature

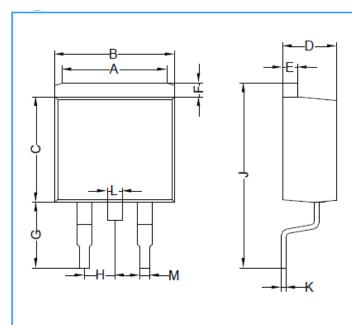

vs. Junction Temperature



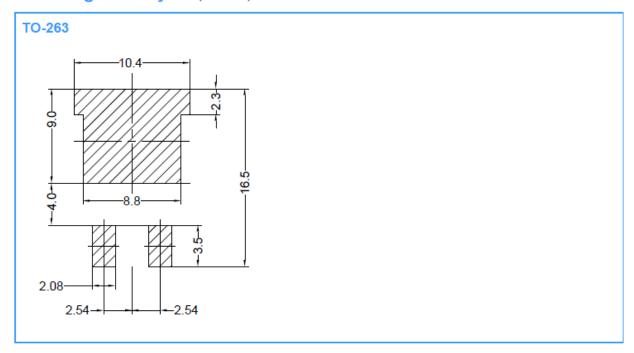


Package Outline Dimensions (Unit: mm)

TO-220AB				
Dimension	Min.	Max.		
Α	9.80	10.30		
В	8.70	9.10		
С	4.37	4.77		
D	1.07	1.47		
E	2.64	2.84		
F	13.14	13.74		
G	2.44	2.64		
Н	28.03	28.83		
I	3.50	4.00		
J	0.28	0.48		
K	1.22	1.32		
L	0.71	0.91		
M	2.40	2.60		
N	3.76	3.96		



ITO-220AB				
Dimension	Min.	Max.		
Α	9.90	10.30		
В	14.80	15.20		
С	4.30	4.70		
D	2.50	2.90		
Е	2.80	3.30		
F	13.00	13.60		
G	3.10	3.30		
Н	28.00	28.60		
1	7.90	8.90		
J	0.40	0.60		
L	0.70	0.90		
M	1.30	1.50		
N	2.60	2.80		
0	2.60	3.10		
Р	2.45	2.65		
K/R	1.10	1.30		


Akyga semi Page 6/8 2023-08; REV. 1

TO-263				
Dimension	Min.	Max.		
Α	6.00	8.00		
В	9.90	10.30		
С	8.50	9.10		
D	4.37	4.77		
E	1.07	1.47		
F	1.07	1.47		
G	5.34	5.74		
Н	2.44	2.64		
J	15.30	15.90		
K	0.28	0.48		
L	1.17	1.37		
M	0.71	0.91		

Mounting Pad Layout (Unit: mm)

Disclaimer

Akyga semi reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Akyga semi or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on Akyga semi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. Akyga semi does not assume any liability arising out of the application or use of any product or circuit. Akyga semi products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Akyga semi. Customers using or selling Akyga semi components for use in such applications do so at their own risk and shall agree to fully indemnify Akyga semi and its subsidiaries harmless against all claims, damages and expenditures.

Akyga semi Page 8/8 2023-08; REV. 1