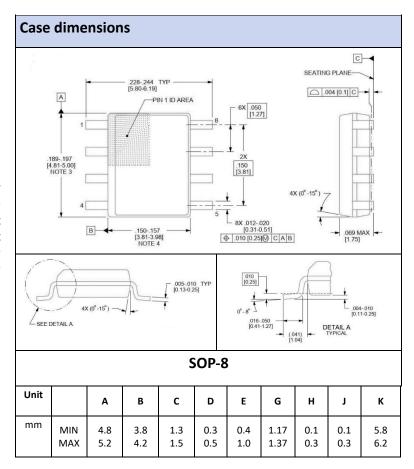


Dual operational amplifiers

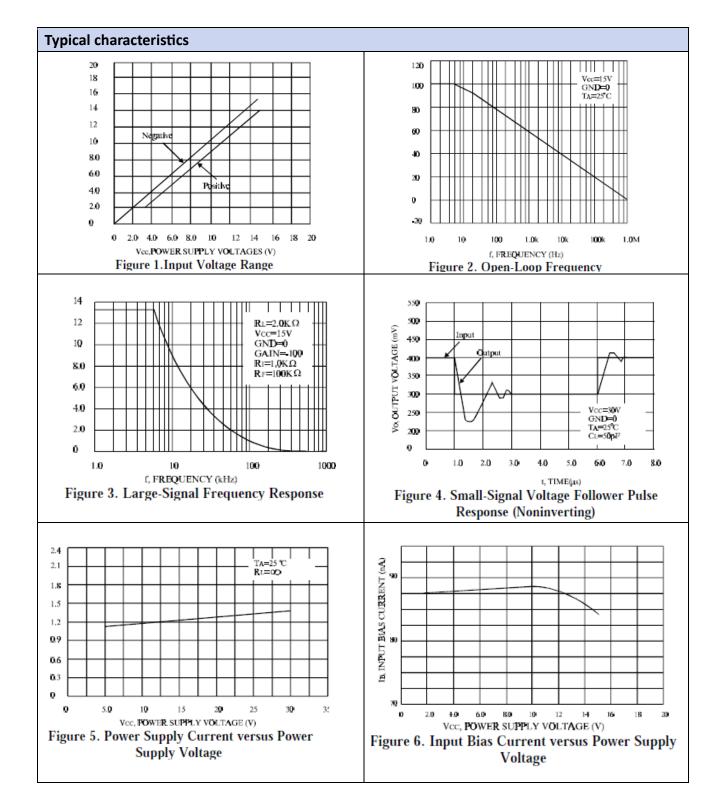

Primary characteristics			
Parameter	Value	Unit	
Supply voltage	32	V	
DC Voltage gain	100	dB	

Description

The **LM358** contains two independent high gain operational amplifiers with internal frequency compensation. The two op-amps operate over a wide voltage range from a single power supply. Also use a split power supply. The device has low power supply current drain, regardless of the power supply voltage. The low power drain also makes the LM358 a good choice for battery operation.

Features

- Internally frequency compensated for unity gain
- Large DC voltage gain: 100dB
- Wide operating supply range 3V~32V
- Input common-mode voltage includes ground
- Large output voltage swing: from 0V to Vcc-1.5V DC
- Power drain suitable for battery operation
- Low input offset voltage and offset current
- Differential input voltage range equal to the power supply voltage



Absolute maximum ratings				
Parameter	Symbol	Value	Unit	
Supply voltage	V _{CC}	32	V	
Differential input voltage	V_{IDR}	±32	V	
Input voltage	V _{ICR}	-0.3 ~ +32	V	
Storage temperature	T _{STG}	-55 ~ +125	°C	

Electrical characteristics						
V _{CC} =5.0V, all voltage referenced to GND unless otherwise specified.						
Parameter	Symbol	Test conditions		Value		Unit
	· · · · · · · · · · · · · · · · · · ·		Min.	Тур.	Max.	
Input offset voltage	V _{I(OFF)}	$VI_{CM}=0V$ to $V_{CC}-1.7V$	_	-	9.0	mV
	VI(OFF)	$V_{O(P)}$ =1.4V, R_S =0 Ω				
Input offset current	I _{I(OFF)}	Vcc	-	-	150	nA
Input bias current	I _{I(BIAS)}		-	-	-500	nA
Input common mode voltage	$V_{I(CR)}$	V _{CC} =30V	0	-	28	V
Dower supply ourrent		$R_L = \infty$, $V_{CC} = 30V$, $V_0 = 0V$	-	-	3.0	mA
Power supply current	Icc	$R_L=\infty$, $V_{CC}=5.0V$, $V_0=0V$	-	-	1.2	mA
Large signal voltage gain	Gv	V _{CC} =15V, R _L =2.0kΩ	15	-	-	V/mV
Output voltage swing	.,	V _{CC} =30V, R _L =2.0kΩ	26	-	-	V
	V _{O(H)}	V_{CC} =30V, R_L =10k Ω	27	-	-	
	V _{O(L)}	V_{CC} =30V, R_L =10k Ω	-	-	20	mV
Common mode rejection ratio	CMRR	V_{CC} =30 V , R_S =10 $k\Omega$	65	-	-	dB
Power supply rejection ratio	PSRR	V _{CC} =30V	65	-	-	dB
Channel separation	CS	f=1.0kHz ~ 20kHz, Vcc=30V	-120	-	-	dB
Short circuit current to ground	I _{sc}	V _{CC} =5.0V	-	-	60	mA
Output current		V _I (+)=1.0V, V _I (-)=0V	40	-	-	mA
	Isource	$V_{CC}=15V, V_{O(P)}=0.0V$	10			
		V _I (+)=0V, V _I (-)=1.0V	5	-		mA
	Isink	$V_{CC}=15V, V_{O(P)}=15V$			-	
		V _I (+)=0V, V _I (-)=1.0V	4.2	-	-	μΑ
		V _{CC} =15V, V _{O(P)} =200mV	12			
Differential input voltage	V _{I(DIFF)}		-	-	Vcc	V

Ordering information			
Part Number	Package	Shipping Quantity	Dimensions
LM358S	SOP-8	2500	

Disclaimer

Akyga semi reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Akyga semi or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on Akyga semi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Akyga semi does not assume any liability arising out of the application or use of any product or circuit. Akyga semi products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Akyga semi. Customers using or selling Akyga semi components for use in such applications do so at their own risk and shall agree to fully indemnify Akyga semi and its subsidiaries harmless against all claims, damages and expenditures.