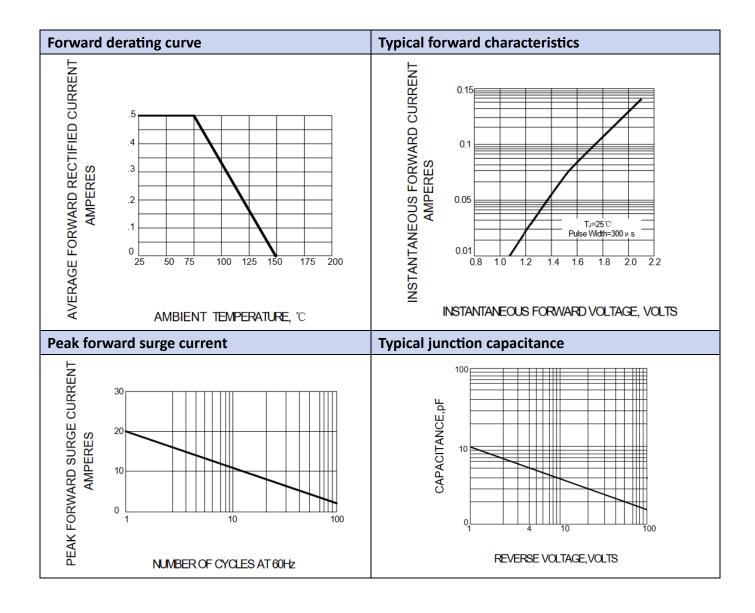


SMD General Rectifier Diode

Primary characteristics						
Parameter	Value	Unit				
Maximum Repetitive Peak Reverse Voltage	1200 ~ 2000	V				
Maximum Average Forward Rectified Current	0.5	A				


Features

- **DO-41** case for easy automatic insertion.
- Pb-free and **RoHS** compliant
- Low leakage
- Glass passivated junction
- High current capability
- Easily cleaned with alcohol, Isopropanol and similar solvents
- The plastics material carries UL recognition 94V-0
- Solderable per MIL-STD-202, Method 208
- Weight: 0.34g/0.012oz

Absolute maximum ratings and general electrical characteristics ($T_a = 25^{\circ}C$)								
Parameter		Symbol	Value				11	
			PR1200G	PR1400G	PR1600G	PR1800G	PR2000G	Unit
Maximum repetitive peak reverse voltage		VRRM	1200	1400	1600	1800	2000	
Maximum RMS voltage		V _{RMS}	840	980	1120	1260	1400	V
Maximum DC blocking voltage		V _{DC}	1200	1400	1600	1800	2000	
Maximum average forward rectified current 9.5mm lead length, @T₃=75°C		I _{F(AV)}	0.5					
Peak forward surge current 8.3mS single half sine wave superimposed on rated load (JEDEC method)		Ifsm	20					A
Maximum instantaneous forward voltage @100mA		V _F	1.8			V		
Maximum DC reverse current at rated DC blocking voltage	Ta=25°C		5.0					μA
	T _a =125°C	- I _R		100				
Maximum reverse recovery time $@I_F=0.5A, I_R=1.0A, I_{rr}=0.25A$		t _{rr}	300				ns	
Typical junction capacitance @1.0MHz, V _R =4.0VDC		Cj	5.0				pF	
Typical thermal resistance junction to ambient		R _{eja}	45			°C/W		
Typical thermal resistance junction to lead		R _{eJL}	10				°C/W	
Operating junction and storage temperature range		T _j , T _{STG}	-55 ~ 150			°C		

Ordering information							
Part Number	Package	Shipping Quantity	Dimensions				
PR1200G ~ PR2000G	DO-41	5000 pcs					

Disclaimer

Akyga semi reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Akyga semi or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on Akyga semi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Akyga semi does not assume any liability arising out of the application or use of any product or circuit. Akyga semi products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Akyga semi. Customers using or selling Akyga semi components for use in such applications do so at their own risk and shall agree to fully indemnify Akyga semi and its subsidiaries harmless against all claims, damages and expenditures.