

Lithium Manganese Battery Technology Specification

Customer

Part name Lithium Manganese Battery

Model No CR2032 210mAh 3.0V

Part No CR2032 ST2NB

Date 2021-08-05

1 Scope

The specification applies to CR2032 ST2NB (Li/MnO_2) battery supplied by:AkygaBattery

2 Characteristics and Performance

2.1 Battery type: CR2032

2.2 Nominal voltage: 3.0 V

2.3 Normal capacity: 210 mAh (15K Ω to cut-off voltage 2.0V at

23°C ±3°C)

2.4 Operating temperature range: $-20-60^{\circ}\text{C}$

2.5 Storage temperature range: $-10^{\circ}30^{\circ}$ C

2.6 Normal weight: 3.0g

2.7 Structure and Outside dimensions: Figl.

2.8 Performance:

CR2032 Performance

Table 1.

Item	Condition	Test temperature	Characteristic	
Open circuit voltage	No load	23℃±3℃	3. 05-3. 45V	
			3. 05-3. 45V	
Load voltage	15kΩ, after 5s	23℃±3℃	3. 00-3. 45V	
			3. 00-3. 45V	
Discharge Capacity	Continually discharge at 15kΩ resistance to cutoff voltage 2.0V 1	23℃±3℃	Normal	1100h
			The lowest	1000h

Table 2.

Item	Condition	Characteristic
Fast Discharge Capacity	Continually discharge at $3k\Omega$ resistance to cut-off voltage 2.0V	210h
Self-discharge rate	The normal temperature and humidity under normal storage for 12 months	Less than 5%

3 Test

3.1 Conditions:

Temperature: $25\pm15^{\circ}$ C, Relative Humidity: $65\pm10^{\circ}$ Pressure: 1.0atm, (unless otherwise specified)

3.2 Measure Instrument:

- 3.2.1 Dimensional measurement: Caliper with accuracy of $\pm\,0.02\text{mm}.$
- 3.2.2 Voltmeter: this has an accuracy of $\pm\,0.2\%$ and impedance of above $10M\,\Omega_{\odot}$
- 3.2.3 Exactitude resistance: tolerance should be $\pm 0.5\%$.
- 3.2.4 Resistance box: tolerance should be $\pm 0.5\%$
- 3.2.5 constant temperature oven: tolerance should be $\pm 2^{\circ}$ C.

3.3 Initial test:

Cells should be tested in the first 3 months after production

3.4 Outside dimensions:

The measuring instrument as specified 3.2.1 is used. The result should meet the requirement of 2.7

3.5 Open circuit voltage:

Cells should be stored for not less than 24 hours at the normal conditions as specified 3.1, at the same circumstance use voltmeter, specified in 3.2.2 to measure voltage between "+" and"-". Results should meet the requirement of table 1

3.6 Load voltage:

Cells should be stored for not less than 24 hours at the normal conditions as specified 3.1, at the same circumstance, Parallel connect meter and $15k\,\Omega$ resistance specified in 3.2.2 to measure voltage between "+" and "-". Result should meet the requirement of table 1

3.7 Discharge capacity:

Cells should be stored for not less than 24 hours at the normal conditions as specified 3.1, Continually discharge at $15k\,\Omega$ resistance to cut-off voltage 2.0v. Results should meet the requirement of table 1

3.8 Appearance:

No scathe, no crackle, no rust, no dirty spots, and mark clearly

3.9 Terminal arrangement:

Have good conduction performance, no deformation and leakages

3.10 Leakage proof characteristic

Store sample cells 30 days at $45\pm3^{\circ}$ C, relative humidity below 70%, then check appearance at normal temperature and normal humidity with naked eyes. Cells should be no leakage.

3.11 Self-discharge rate

Self-discharge rate can calculated as below equation, result should meet the requirement of table 2

Self-discharge rate (%)=
$$\frac{A1-A2}{A1} \times 100\%$$

Al —— Cell average discharge capacity in initial period

A2 — average discharge capacity after storage

3.12 Vibration Test:

The battery is to be subjected to simple harmonic motion with amplitude of 0.8mm. The frequency is to be varied at the rate of 1 Hz per minute between 10 and 55 Hz, and return back between 90 and 100 minutes. The battery is to be tested in three mutually perpendicular directions

3.13 Drop Test:

Cell should be dropped 10 times from the height of 1.9m onto cement ground. Result should be no leakage, no fire and no explosion

3.14 Short-circuit test:

The cell is to be short-circuited by connecting the positive and negative terminals of the cell with copper wire having a resistance about 0.1Ω . Cell is to be completely discharged or its surface temperature has returned to ambient temperature. During the process, cell should be no fire and no explosion

4 Mark

4.1 Cell type: CR2032

4.2 Nominal voltage: 3V

4.3 Polarity: +

5 Inspection rules

5.1 Deliver inspection: Depending on GB2828

Table 3

Number	Test	Item	IL	AQL
1	Dimensions	3. 4	S-2	0. 4
2	Appearance	3.8	II	1.0
3	Open circuit voltage	3. 6	II	0. 4
4	Discharge capacity	3. 7		

- 5.2 Routine inspection: Depending on GB2829 and QB/T2389
- 5.3 Batteries conform to directive of European Union 2006/66/EC and the directive 2013/56/EU

6. Inspection for service output

- 6.1 9 samples shall be tested for service output
- 6.2 If the average value is equal to or more than the value of table 1, and if the number of batteries showing a value less than 80% of the value of table 1 is 1 or less. The batteries are considered to conform to the requirement.
- 6.3 If the average value is less than the value of table 1, or if the number of batteries showing a value less than 80% is 2 or more, the test shall be repeated with other 9 pieces. At the second test, if the average value is equal to or more than the value of table 1, and if the number of batteries showing a value less than 80% of the value of table 1 is 1 or less, these batteries are considered to conform to the requirement.
- 6.4 At above second test, if the average value is less than the value of table 1, or if the number of batteries showing a value less than 80% of the value of table 1 is 2 or more, the batteries are considered not to conform to the requirement. third test shall not be performed

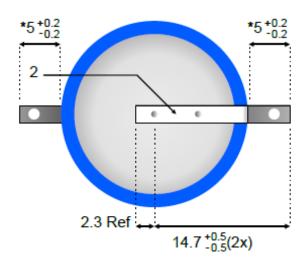
7 Disply and storage

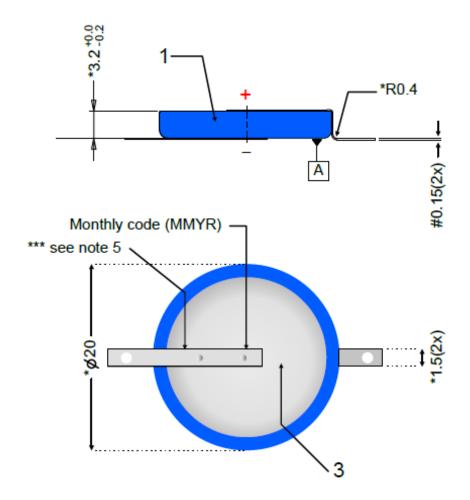
- 7.1 Batteries shall be stored in well-ventilateddry and cool conditions
- 7.2 Battery cartons should not be piledup in severa layers, or should not exceed a specified height
- 7.3 Batteries should not be exposed to direct sun ray for a long time or placed in areas where they get wet by rain.
- 7.4 Do not mix unpacked batteries so as to avoid mechanical damage and/or short circuit among each other

8 Storage life

Storage life of batteries are two years long at $20\,\mathrm{C}\pm2\,\mathrm{C}$ and RH $60\pm15\%$

9 Warnings and Cautions


- 9.1 Do not short circuited, recharge, heat, disassemble nor dispose in fire
- 9.2 Do not force-discharge.
- 9.3 Do not make the anode and the cathode reversed
- 9.4 Do not solder directly
- 9.5 Keep battery out of children's reach
- 9.6 Do not store or use in the environment of over 85° C


10 Note

According to the need, this technical specification may be modified at any time. For more information, please consult with us

Fig. 1 Structure of CR2032 ST2NB

