

# AKYGA BATTERY 40H4.8V Ni-MH BUTTON CELL

## TECHNICAL DATA

| Model | Voltage | Capacity | Recommended Trickle Charge Current | Nominal<br>Charge Current | Normal<br>Charging Time | Nominal Discharge Current | Weight |
|-------|---------|----------|------------------------------------|---------------------------|-------------------------|---------------------------|--------|
| 40H   | 4.8V    | 40mAh    | 0.4~1.2mA                          | 4mA                       | 14~16h                  | 8mA                       | 7.2g   |

## TECHNICAL CHARACTERISTICS

## TECHNICAL INFORMATION

1. APPLICATION

This specification applies to the Ni-MH batteries

Model : 40H4.8V

2. CELL AND TYPE

2.1 Cell :Sealed Ni-MH Button Cell

2.2 Type :Button type

2.3 Size type: 4.8V

3. RATINGS

3.1 Nominal voltage : 4.8V

3.2 Nominal capacity : 40mAh/0.2CmA

3.3 Typical weight : 7.2g

3.4 Standard charge : 4mA×14hours3.5 Rapid charge : 8mA×6.5hours

Trickle current : 0.4mA

3.6 Discharge cut-off voltage: 4.0V

3.7 Temperature range for operation (Humidity: Max.85%)

Standard charge  $0\sim+35^{\circ}$ C Rapid charge  $0\sim+35^{\circ}$ C Trickle charge  $0\sim+35^{\circ}$ C Discharge  $0\sim+35^{\circ}$ C

3.8 Temperature range for storage (Humidity: Max.85%)

Within 1 years  $0\sim +25^{\circ}$ C
Within 6 months  $-20\sim +35^{\circ}$ C
Within a month  $-20\sim +45^{\circ}$ C
Within a week  $-20\sim +55^{\circ}$ C

4. ASSEMBLY & DIMENSIONS

Per attached drawing

5. PERFORMANCE

5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery)

ambient conditions

Temperature:  $+25\pm5^{\circ}$ C

Humidity:  $60\pm20\%$ 

Note 1

 $\begin{array}{ll} \text{Standard charge} & : 4\text{mA} \times 14\text{hours} \\ \text{Standard discharge} & : 0.2\text{C to } 4.0\text{V} \end{array}$ 

#### 5.2 TEST METHOD & PERFORMANCE

| Test            | Unit    | Specification  | Conditions            | Remarks        |
|-----------------|---------|----------------|-----------------------|----------------|
| Capacity        | mAh     | ≥40            | Standard              | Up to 3 cycies |
|                 |         |                | Charge/discharge      | Are allowed    |
| Open Circuit    | Voltage | ≥5.2           | After 1 hour standard |                |
| Voltage(OCV)    | (V)     |                | Charge                |                |
| Internal        | mΩ      | ≤3200          | Upon fully charge     |                |
| Impedance       |         |                | (1KHz)                |                |
| High rate       | Minute  | ≥51            | Standard charge       |                |
| Discharge(0.5C) |         |                | Before discharge      |                |
| Discharge       | mA      | 20             | Maximum continuous    |                |
| Current         |         |                | Discharge current     |                |
| Over charge     |         | No leakage     | 0.4mA(0.01C) charge   |                |
|                 |         | Not explosion  | one year              |                |
| Charge          | mAh     | 32             | Standard charge;      |                |
| Retention       |         |                | Storage: 28 days;     |                |
|                 |         |                | Standard discharge    |                |
| Cycle Life      | Cycle   | ≥500           | IEC285(1993)4.4.1     |                |
| Leakage         |         | No leakage nor | Fully charge at 2mA,  |                |
|                 |         | Deformation    | Stand 28 days         |                |

### Note 2 IEC285(1993)4.4.1 cycle life

|      | Cycle number | Charge      | Rest | Discharge   |  |
|------|--------------|-------------|------|-------------|--|
| 1-50 |              | 4mA for 14h | 0.5h | 8mA to 4.0V |  |

50 cycles of test as in the following table condition is repeated, The discharge time of the  $100^{th},200^{th},400^{th},500^{th}$  is more than 5 hours. (Ambient temperature is  $20\pm5^{\circ}\text{C}$ )

### 5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of  $33\pm3$  °C and a relative humidity of  $80\pm5$ %

- 6. OTHERS
- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity
- 6.3 If it is below 1.0V/cell, the battery may have discharge or reverse charge to the cell
- 7. PRECAUTION

The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at  $20\pm5^{\circ}$ C at a constant current of 0.2CmA to a final voltage of 1.0V/cell.

- 7.1 Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- 7.6 Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.