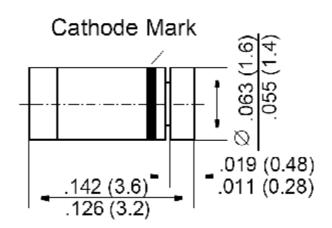


SCHOTTKY DIODE

FEATURES

- For general purpose applications.
- The LL103A, B, C is a metal-on-silicon
 Schottky barrier device which is pro-


tected by a PN junction guard ring.

- The low forward voltage drop and fast switching make it ideal for protection of MOS devices, steering, biasing and coupling diodes for fast switching and low logic level applications.
 Other applications are click suppression, efficient full wave bridges in telephone subsets, and blocking diodes in rechargeable low voltage battery systems.
- This diode is also available in DO-35 case with the type designation SD103A, B, C, and in the SOD-123 case with type designation SD103AW, SD103BW, SD103CW.

MECHANICAL DATA

- Case: MiniMELF Glass Case SOD-80C
- Weight: approx. 0.05 g

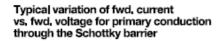
MiniMELF

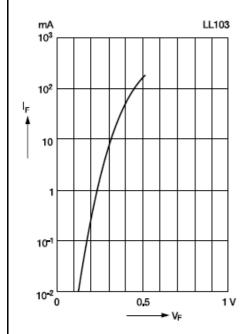
Dimensions in inches and (millienters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

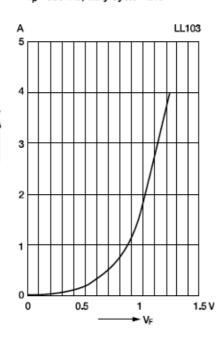
Ratings at 25℃ ambient temperature unless otherwise specified

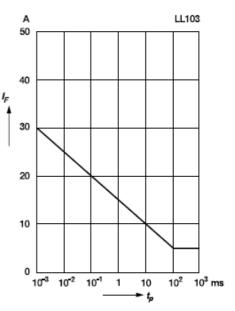
realings at 20 c ambient temperature amose etherwise specimed								
Parameter	Symbol	LL103A	LL103B	LL103C	Units			
Peak Inverse Voltage	VRRM	40	30	20	V			
Power Dissipation (Infinite Heatsink) TC =3/8" from Body derates at 4 mW/°C to 0 at 125 °C	PtOt		mW					
Single Cycle Surge 60-Hz Sine Wave	IFSM		A					
Junction Temperature	TJ	125			°C			
Storage Temperature Range	Ts		$^{\circ}\! \mathbb{C}$					


¹⁾ Valid provided that electrodes are kept at ambient temperature.

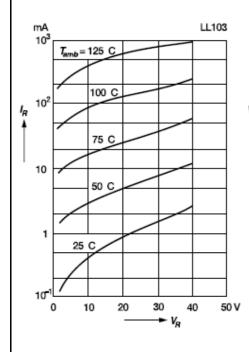

ELECTRICAL CHARACTERISTICS

					se speci ¹	

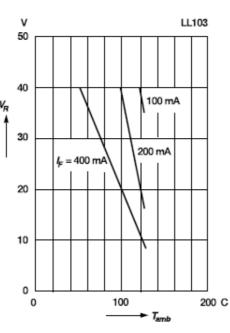

Parameter	Symbol	Min.	Тур.	Max.	Units
Leakage Current @ VR=30V LL103A		-	-	5	
@ VR=20V LL103B	lr	-	-	5	μΑ
@ VR=10V LL103C		-	-	5	
Forward Voltage Drop @IF=20mA	VF	-	-	0.37	V
@ IF=200mA		-	-	0.6	
Junction Capacitance at VR = 0 V, f = 1 MHz	Ctot	-	50	-	pF
Reverse Recovery Time at IF = IR = 50 mA to 200 mA, recover to 0.1 IR	trr	-	10	-	ns

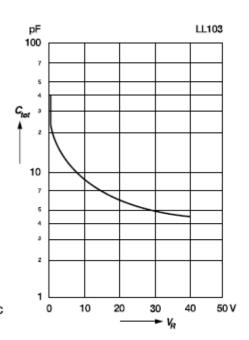


Typical high current forward conduction curve t_p =300 ms, duty cycle =2%



Typical non repetitive forward surge current versus pulse width




Typical variation of reverse current at various temperatures

Blocking voltage deration versus temperature at various average forward currents

Typical capacitance versus reverse voltage

