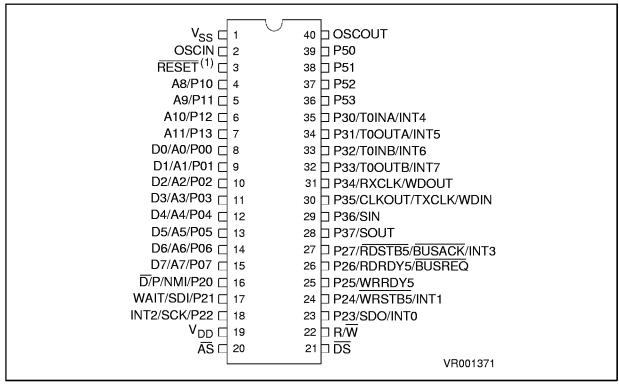


ST90E27/T27 ST90E28/T28


16K EPROM HCMOS MCUs WITH RAM

- Register oriented 8/16 bit CORE with RUN, WFI and HALT modes
- Minimum instruction cycle time: 500ns (12MHz internal)
- Internal Memory:
 EPROM 16Kbytes
 RAM 256bytes
 224 general purpose registers available as RAM, accumulators or index pointers
 (Register File)
- 40-lead Dual In Line Plastic Package for ST90T27.
- 40-lead Windowed Ceramic Dual In Line Package for ST90E27.
- 44-lead Plastic Leaded Chip Carrier Package for ST90T28C.
- 44-lead Windowed Ceramic Leaded Chip Carrier Package for ST90E28L
- 56-lead Dual In Line Plastic Package for ST90T28B.
- 56-lead Windowed Ceramic Dual In Line Package for ST90E28D.
- DMA controller, Interrupt handler and Serial Peripheral Interface as standard features
- Up to 40 fully programmable I/O pins
- Up to 8 external plus 1 non-maskable interrupts
- 16 bit Timer with 8 bit Prescaler, able to be used as a Watchdog Timer
- One 16 bit Multifunction Timer, with an 8 bit prescaler and 12 operating modes
- Serial Communications Interface with asynchronous and synchronous capability
- Rich Instruction Set and 14 Addressing modes
- Division-by-Zero trap generation
- Versatile Development tools, including assembler, linker, C-compiler, archiver, graphic oriented debugger and hardware emulators
- Real Time Operating System
- Compatible with ST9020 12K ROM and ST9027/2816K ROM/256 RAM.

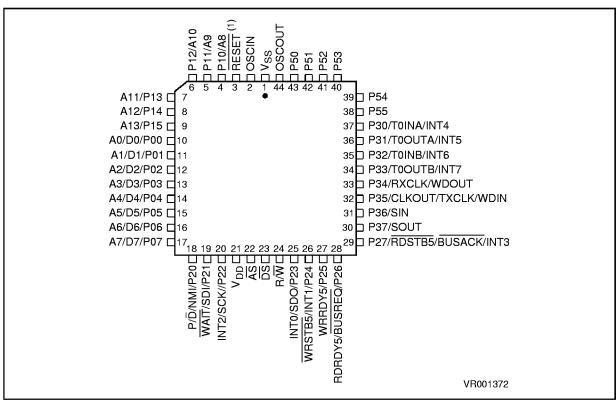
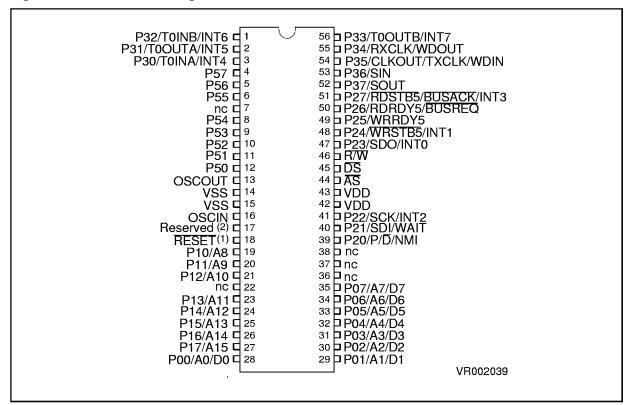

January 1995 165/194

Figure 1-1. 40 Pin DIP Package

Note 1. This pin is also the VPP input for the EPROM based devices


Figure 1-2. 44 Pin PLCC Package

Note 1. This pin is also the VPP input for the EPROM based devices

166/194

Figure 1-3. 56 Pin DIP Package

Note 1. This pin is also the VPP input for the EPROM based devices

1.1 GENERAL DESCRIPTION

The ST90E27, E28 and ST90T27, T28 (following mentioned as ST90E2x) are EPROM members of the ST9 family of microcontrollers, in windowed ceramic (E) and plastic OTP (T) packages respectively, completely developed and produced by SGS-THOMSON Microelectronics using a n-well proprietary HCMOS process.

The EPROM parts are fully compatible with their ROM versions and this datasheet will thus provide only information specific to the EPROM based devices

THE READER IS ASKED TO REFER TO THE DATASHEET OF THE ST902x ROM-BASED DE-VICE FOR FURTHER DETAILS.

The EPROM ST90E2x may be used for the prototyping and pre-production phases of development, and can be configured as: a standalone microcontroller with 16K bytes of on-chip ROM, a microcontroller able to manage external memory, or as a parallel processing element in a system with other processors and peripheral controllers. The nucleus of the modular design of the ST902X is the advanced Core which includes the Central Processing Unit (CPU), the Register File, a 16 bit Timer/Watchdog with 8 bit Prescaler, a Serial Peripheral Interface supporting S-bus, I²C-bus and IM-bus Interface, plus two 8 bit I/O ports. The Core has independent memory and register buses allowing a high degree of pipelining to add to the efficiency of the code execution speed of the extensive instruction set.

The powerful I/O capabilities demanded by microcontroller applications are fulfilled by the ST902X with up to 40 I/O lines dedicated to digital Input/Output. These lines are grouped into up to three 8-bit and two 4/6/8-bit I/O Ports and can be configured on a bit basis under software control to provide timing, status signals, an address/databus for interfacing external memory, timer inputs and outputs, external interrupts and serial or parallel I/O with or without handshake.

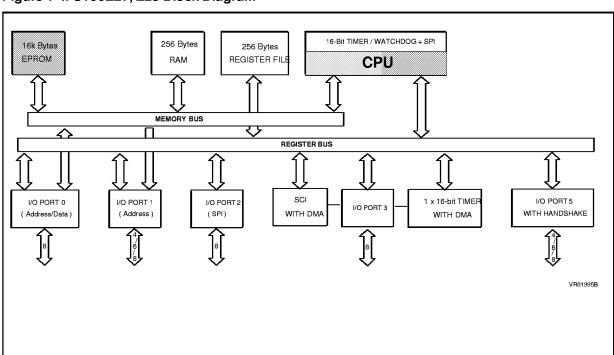


Figure 1-4. ST90E27, E28 Block Diagram

GENERAL DESCRIPTION (Continued)

Three basic memory spaces are available to support this wide range of configurations: Program Memory (internal and external), Data Memory (external) and the Register File, which includes the control and status registers of the on-chip peripherals.

The 16 bit MultiFunction Timer, with an 8 bit Prescaler and 12 operating modes allows simple use for complex waveform generation and measurement, PWM functions and many other system timing functions by the usage of the two associated DMA channels for each timer.

Completing the device is a full duplex Serial Communications Interface with an integral 110 to 375000 baud rate generator, asynchronous and byte synchronous capability (fully programmable format) and associated address/wake-up option, plus two DMA channels.

1.2 PIN DESCRIPTION

AS. Address Strobe (output, active low, 3-state). Address Strobe is pulsed low once at the beginning of each memory cycle. The rising edge of AS indicates that address, Read/Write (R/W), and Data Memory signals are valid for program or data memory transfers. Under program control, AS can be placed in a high-impedance state along with Port 0 and Port 1, Data Strobe (DS) and R/W.

DS. Data Strobe (output, active low, 3-state). Data Strobe provides the timing for data movement to or from Port 0 for each memory transfer. During a write cycle, data out is valid at the leading edge of DS. During a read cycle, Data In must be valid prior to the trailing edge of DS. When the ST902x accesses on-chip memory, DS is held high during the whole memory cycle. It can be placed in a high impedance state along with Port 0, Port 1, AS and R/W

R/W. Read/Write (output, 3-state). Read/Write determines the direction of data transfer for external memory transactions. R/W is low when writing to external program or data memory, and high for all other transactions. It can be placed in a high impedance state along with Port 0, Port 1, AS and DS.

RESET/V_{PP.} Reset (input, active low) or V_{PP} (input). The ST9 is initialised by the Reset signal. With the deactivation of RESET, program execution begins from the Program memory location

pointed to by the vector contained in program memory locations 00h and 01h. In the EPROM programming Mode, this pin acts as the programming voltage input VPP.

OSCIN, OSCOUT. Oscillator (input and output). These pins connect a parallel-resonant crystal (24MHz maximum), or an external source to the on-chip clock oscillator and buffer. OSCIN is the input of the oscillator inverter and internal clock generator; OSCOUT is the output of the oscillator inverter.

V_{DD}. Main Power Supply Voltage (5V \pm 10%)

Vss. Digital Circuit Ground.

P0.0-P0.7, **P1.0-P1.7**, **P2.0-P2.7 P3.0-P3.7**, **P5.0-P5.7** *I/O Port Lines (Input/Output, TTL or CMOS compatible).* 40 lines grouped into I/O ports of 4/6/8 bits, bit programmable under program control as general purpose I/O or as alternate functions.

1.3 I/O PORT ALTERNATE FUNCTIONS

Each pin of the I/O ports of the ST902x may assume software programmable Alternative Functions as shown in the Pin Configuration Drawings. Table 1-1 shows the Functions allocated to each I/O Port pins and a summary of packages for which they are available.

PIN DESCRIPTION (Continued)

Table 1-1. ST902x I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pi	n Assignme	ent
Port.bit				SDIP56	PDIP40	PLCC44
P0.0	A0/D0	I/O	Address/Data bit 0 mux	28	8	10
P0.1	A1/D1	I/O	Address/Data bit 1 mux	29	9	11
P0.2	A2/D2	I/O	Address/Data bit 2 mux	30	10	12
P0.3	A3/D3	I/O	Address/Data bit 3 mux	31	11	13
P0.4	A4/D4	I/O	Address/Data bit 4 mux	32	12	14
P0.5	A5/D5	I/O	Address/Data bit 5 mux	33	13	15
P0.6	A6/D6	I/O	Address/Data bit 6 mux	34	14	16
P0.7	A 7/D7	I/O	Address/Data bit 7 mux	35	15	17
P1.0	A8	0	Address bit 8	19	4	4
P1.1	A 9	0	Address bit 9	20	5	5
P1.2	A10	0	Address bit 10	21	6	6
P1.3	A11	0	Address bit 11	23	7	7
P1.4	A12	0	Address bit 12	24	-	8
P1.5	A13	0	Address bit 13	25	-	9
P1.6	A14	0	Address bit 14	26	-	-
P1.7	A15	0	Address bit 15	27	-	-
P2.0	NMI	ı	Non-Maskable Interrupt	39	16	18
P2.0	P/D	0	Program/Data Space Select	39	16	18
P2.1	SDI	1	SPI Serial Data In	40	17	19
P2.1	WAIT	ı	External Wait Input	40	17	19
P2.2	INT2	1	External Interrupt 2	41	18	20
P2.2	SCK	0	SPI Serial Clock	41	18	20
P2.3	INT0	ı	External Interrupt 0	47	23	25
P2.3	SDO	0	SPI Serial Data Out	47	23	25
P2.4	INT1	I	External Interrupt 1	48	24	26
P2.4	WRSTB5	I	Handshake Write Strobe P5	48	24	26
P2.5	WRRDY5	0	Handshake Write Ready P5	49	25	27
P2.6	RDRDY5	0	Handshake Read Ready P5	50	26	28

PIN DESCRIPTION (Continued)

Table 1-1. ST902x I/O Port Alternate Function Summary

I/O PORT	Name	Function	Alternate Function	Pi	n Assignme	ent
Port.bit				SDIP56	PDIP40	PLCC44
P2.6	BUSREQ	I	External Bus Request	50	26	28
P2.7	INT3	I	External Interrupt 1	51	27	29
P2.7	RDSTB5	I	Handshake Read Strobe P5	51	27	29
P2.7	BUSACK	0	External Bus Acknowledge	51	27	29
P3.0	INT4	I	External Interrupt 4	3	35	37
P3.0	TOINA	I	MF Timer 0 Input A	3	35	37
P3.1	INT5	I	External Interrupt 5	2	34	36
P3.1	T0OUTA	0	MF Timer 0 Output A	2	34	36
P3.2	INT6	I	External Interrupt 6	1	33	35
P3.2	TOINB	I	MF Timer 0 Input B	1	33	35
P3.3	INT7	I	External Interrupt 7	56	32	34
P3.3	T0OUTB	0	MF Timer 0 Output B	56	32	34
P3.4	RXCLK	I	SCI Receive Clock Input	55	31	33
P3.4	WDOUT	0	T/WD Output	55	31	33
P3.5	CLKOUT	0	SCI Byte Sync Clock Output	54	30	32
P3.5	TXCLK	I	SCI Transmit Clock Input	54	30	32
P3.5	WDIN	I	T/WD Input	54	30	32
P3.6	SIN	I	SCI Serial Input	53	29	31
P3.7	SOUT	0	SCI Serial Output	52	28	30
P5.0		0	I/O Handshake Port 5	12	39	43
P5.1		0	I/O Handshake Port 5	11	38	42
P5.2		0	I/O Handshake Port 5	10	37	41
P5.3		0	I/O Handshake Port 5	9	36	40
P5.4		0	I/O Handshake Port 5	8	-	39
P5.5		0	I/O Handshake Port 5	6	-	38
P5.6		0	I/O Handshake Port 6	5	-	-
P5.7		0	I/O Handshake Port 7	4	-	-

1.4 MEMORY

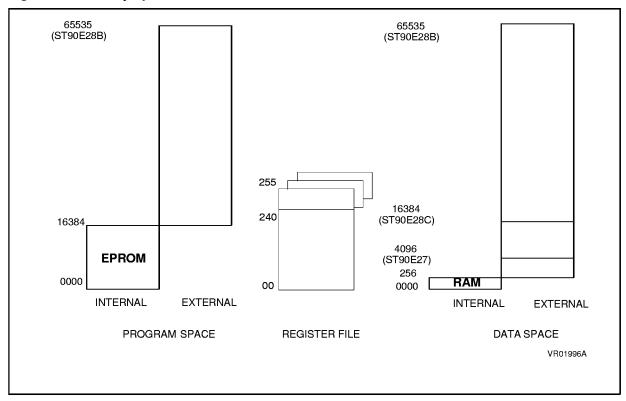
The memory of the ST90E2x is functionally divided into two areas, the Register File and Memory. The Memory is divided into two spaces, each having a maximum of 64K bytes. The two memory spaces are separated by function, one space for Program code, the other for Data. The ST90E2x 16K bytes of on-chip EPROM memory are selected at memory addresses 0 through 3FFFh (hexadecimal) in the PROGRAM space, while the ST90T2x OTP version has the top 64 bytes of the EPROM reserved by SGS-THOMSON for testing purposes. The DATA space includes the 256 bytes of on-chip RAM memory at memory addresses 0000h through 00FFh.

WARNING. The ST90T2x has its 64 upper bytes in the internal EPROM reserved for testing purpose.

External data memory may be addressed using the multiplexed address and data buses (Alternate Functions of Ports 0 and 1). Additional Data Memory may be decoded externally by using the P/D Alternate Function output. The on-chip general purpose (GP) Registers may also be used as RAM memory for minimum chip count systems.

1.5 EPROM PROGRAMMING

The 16384 bytes of EPROM memory of the ST90E2x (16320 for the ST90T2x) may be programmed by using the EPROM Programming Boards (EPB) available from SGS-THOMSON.


1.5.1 Eprom Erasing

The EPROM of the windowed package of the ST90E2x may be erased by exposure to Ultra-Violet light.

The erasure characteristic of the ST90E2x is such that erasure begins when the memory is exposed to light with a wave lengths shorter than approximately 4000Å. It should be noted that sunlight and some types of fluorescent lamps have wavelengths in the range 3000-4000Å. It is thus recommended that the window of the ST90E2xpackages be covered by an opaque label to prevent unintentional erasure problems when testing the application in such an environment.

The recommended erasure procedure of the EPROM is the exposure to short wave ultraviolet light which have a wave-length 2537Å. The integrated dose (i.e. U.V. intensity x exposure time) for erasure should be a minimum of 15W-sec/cm2. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with $12000\mu \text{W/cm}^2$ power rating. The ST90E2x should be placed within 2.5cm (1Inch) of the lamp tubes during erasure.

Figure 1-5. Memory Spaces

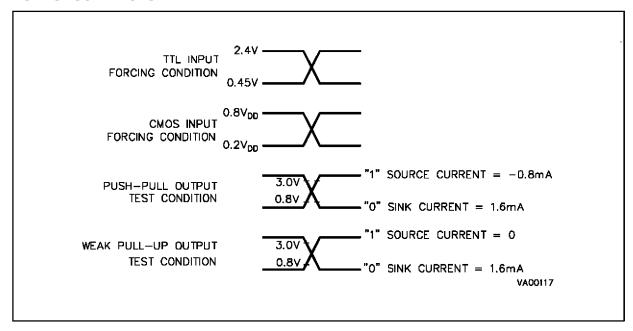
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	– 0.3 to 7.0	٧
VI	Input Voltage	- 0.3 to V _{DD} +0.3	٧
Vo	Output Voltage	- 0.3 to V _{DD} +0.3	٧
V_{PP}	Input Voltage on V _{PP} Pin	-0.3 to 13.5	٧
T _{STG}	Storage Temperature	- 55 to + 150	°C
I _{INJ}	Pin Injection Current Digital	-5 to 5	mA
	Maximum accumulated pin injection Current in the device	-50 to 50	mA

Note: Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. All voltages are referenced to VSS

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value		Unit
Symbol	rai allietei	Min.	Max.	Offic
T _A	Operating Temperature	– 40	85	°C
V_{DD}	Operating Supply Voltage	4.5	5.5	٧
fosce	External Oscillator Frequency		24	MHz
fosci	Internal Clock Frequency (INTCLK)		12	MHz


DC ELECTRICAL CHARACTERISTICS $V_{DD}=5V\pm10\%~T_{A}=-40^{\circ}C~to~+85^{\circ}C,~unless~otherwise~specified)$

Cumbal	Parameter	Test Conditions		Value		Unit
Symbol	Parameter	rest Conditions	Min.	Тур.	Max.	Unit
VIHCK	Clock Input High Level	External Clock	0.7 V _{DD}		V _{DD} + 0.3	٧
V _{ILCK}	Clock Input Low Level	External Clock	-0.3		0.3 V _{DD}	٧
V	Input High Level	TTL	2.0		V _{DD} + 0.3	٧
V _{IH}	Imput High Level	CMOS	0.7 V _{DD}		V _{DD} + 0.3	٧
V	Input Low Level	TTL	-0.3		0.8	٧
V_{IL}	Imput Low Level	CMOS	-0.3		0.3 V _{DD}	٧
V _{IHRS}	RESET Input High Level		0.7 V _{DD}		V _{DD} + 0.3	٧
V_{ILRS}	RESET Input Low Level		-0.3		0.3 V _{DD}	٧
V_{HYRS}	RESET Input Hysteresis		0.3		1.5	٧
V _{OH}	Output High Level	Push Pull, lload = - 0.8mA	V _{DD} – 0.8			٧
V _{OL}	Output Low Level	Push Pull or Open Drain, lload = 1.6mA			0.4	٧

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions		Value		Unit
Symbol	Parameter	rest Conditions	Min.	Тур.	Max.	Offic
I _{WPU}	Weak Pull-up Current	Bidirectional Weak Pull- up, V _{OL} = 0V	- 50	- 200	– 420	μΑ
I _{APU}	Active Pull-up Current, for INT0 and INT7 only	V _{IN} < 0.8V, under Reset	- 80	- 200	– 420	μА
I _{LKIO}	I/O Pin Input Leakage	Input/Tri-State, 0V < V _{IN} < V _{DD}	- 10		+ 10	μΑ
I _{LKRS}	Reset Pin Input Leakage	$0V < V_{IN} < V_{DD}$	-30		+ 30	μΑ
I _{LKAP}	Active Pull-up Input Leakage	0V < V _{IN} < 0.8V	- 10		+ 10	μА
I _{LKOS}	OSCIN Pin Input Leakage	$0V < V_{IN} < V_{DD}$	– 10		+ 10	μΑ
V _{PP}	EPROM Programming Voltage		12.2	12.5	12.8	٧
I _{PP}	EPROM Programming Current				30	mA

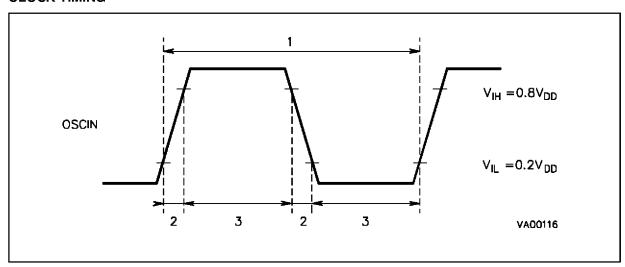
DC TEST CONDITIONS

Note:

1. All I/O Ports are configured in Bidirectional Weak Pull-up Mode with no DC load, External Clock pin (OSCIN) is driven by square wave external clock. No peripheral working.

AC ELECTRICAL CHARACTERISTICS (VDD = $5V \pm 10\%$ TA = -40° C to $+85^{\circ}$ C, unless otherwise specified)

Symbol	Parameter	Test Conditions		Value		Unit	
Symbol	raiametei	rest conditions	Min.	Тур.	Max.		
l _{DD}	Run Mode Current no CPUCLK prescale, Clock divide by 2	24MHz 4MHz			40	mA	
I _{DP2}	Run Mode Current Prescale by 2 Clock divide by 2	24MHz 4MHz			25 8	mA	
I _{WFI}	WFI Mode Current no CPUCLK prescale, Clock divide by 2	24MHz 4MHz			15 5	mA	
IHALT	HALT Mode Current	24MHz			10	μА	


CLOCK TIMING TABLE

(V_{DD} = $5V \pm 10\%$, T_A = -40°C to + 85°C

N°	Symbol	pol Parameter —	Va	lue	Unit	Note
	Symbol	Parameter	Min.	Max.	Offic	Note
1	ТрС	OSCIN Clock Period	41.5		ns	1
			83		ns	2
2	TrC, TfC	OSCIN Rise and Fall Time		12	ns	
3	TwCL, TwCH	OSCIN Low and High Width	17	25	ns	1
			38		ns	2

- Notes:
 1. Clock divided by 2 internally (MODER.DIV2=1)
 2. Clock not divided by 2 internally (MODER.DIV2=0)

CLOCK TIMING

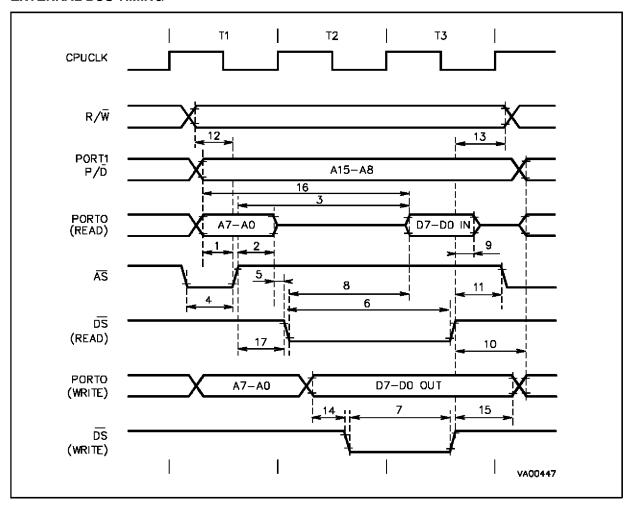
EXTERNAL BUS TIMING TABLE ($V_{DD} = 5V \pm 10\%$, $T_A = -40$ °C to +85°C, Cload =50pF, CPUCLK =12MHz, unless otherwise specified)

			\	/alue (Note)			
N°	Symbol	Parameter	OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	Unit
1	TsA (AS)	Address Set-up Time before AS↑	TpC (2P+1) -22	TWCH+PTpC -18	20		ns
2	ThAS (A)	Address Hold Time after AS↑	TpC -17	TwCL -13	25		ns
3	TdAS (DR)	AS↑ to Data Available (read)	TpC (4P+2W+4) -52	TpC (2P+W+2) -51		115	ns
4	TwAS	AS Low Pulse Width	TpC (2P+1)-7	TwCH+PTpC -3	35		ns
5	TdAz (DS)	DS ↓ to Address Float			12		ns
6	TwDSR	DS Low Pulse Width (read)	TpC (4P+2W+3) -20	TwCH+TpC (2P+W+1) -16	105		ns
7	TwDSW	DS Low Pulse Width (write)	TpC (2P+2W+2)-13	TpC (P+W+1) -13	70		ns
8	TdDSR (DR)	DS ↓ to Data Valid Delay (read)	TpC (4P+2W-3) -50	TwCH+TpC(2P+W+1 -46		75	ns
9	ThDR (DS)	Data to DS ↑ Hold Time (read)	0	0	0		ns
10	TdDS (A)	DS ↑ to Address Active Delay	TpC -7	TwCL –3	35		ns
11	TdDS (AS)	DS ↑ to AS ↓ Delay	TpC -18	TwCL -14	24		ns
12	TsR/W (AS)	R/W Set-up Time before AS↑	TpC (2P+1)-22	TwCH+PTpC -18	20		ns
13	TdDSR (R/W)	DS ↑ to R/W and Address Not Valid Delay	TpC -9	TwCL -5	33		ns
14	TdDW (DSW)	Write Data Valid to DS ↓ Delay (write)	TpC (2P+1) -32	TwCH+PTpC –28	10		ns
15	ThDS (DW)	Data Hold Time after DS↑ (write)	TpC –9	TwCL -5	33		ns
16	TdA (DR)	Address Valid to Data Valid Delay (read)	TpC (6P+2W+5) -68	TwCH+TpC (3P+W+2) -64		140	ns
17	TdAs (DS)	AS↑ to DS↓ Delay	TpC -18	TwCL -14	24		ns

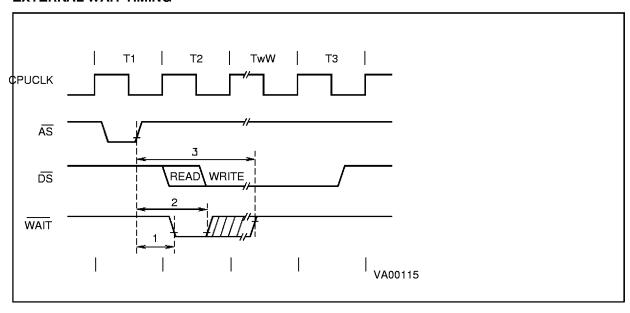
EXTERNAL WAIT TIMING TABLE ($V_{DD} = 5V \pm 10\%$, $T_A = -40\%$ to +85%, Cload = 50pF, INTCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

			Value (Note)				
N°	Symbol	Parameter	OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	Unit
1	TdAs (WAIT)	AS↑ to WAIT↓ Delay	2(P+1)TpC -29	2(P+1)TpC -29		40	ns
2	TdAs (WAIT)	AS↑ to WAIT↓ Min. Delay	2(P+W+1)TpC -4	2(P+W+1)TpC -4	80		ns
3	TdAs (WAIT)	AS↑ to WAIT↓ Max. Delay	2(P+W+1)TpC -29	2(P+W+1)TpC -29		83W+ 40	ns

Note: (for both table) The value in the left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.


The value in the right hand two columns show the timing minimum and maximum for an external clock at 24 MHz divided by 2, prescaler value of zero and zero wait status.

Legend: P = Clock Prescaling Value W = Wait Cycles


TpC =OSCIN Period TwCH =High Level OSCIN half period
TwCL =Low Level OSCIN half period

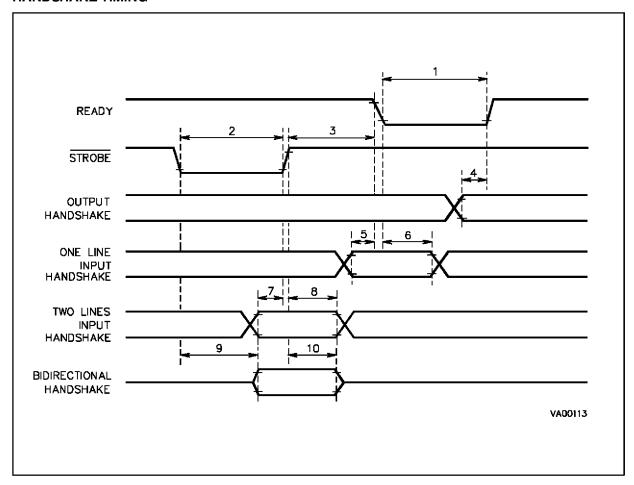
EXTERNAL BUS TIMING

EXTERNAL WAIT TIMING

178/194

HANDSHAKE TIMING TABLE ($V_{DD}=5V\pm10\%$, $T_{A}=-40^{\circ}C$ to +85°C, Cload = 50pF, INTCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

				Value	(Note)				
N°	Symbol	Parameter	OSCIN I		OSCIN No By	ot Divided / 2	Min.	Max.	Unit
			Min.	Max.	Min.	Max.			
1	TwRDY	RDRDY, WRRDY Pulse Width in One Line Handshake	2TpC (P+W+1) –18		TpC (P+W+1) – 18		65		ns
2	TwSTB	RDSTB, WRSTB Pulse Width	2TpC+12		TpC+12		95		ns
3	TdST (RDY)	RDSTB, or WRSTB↑ to RDRDY or WRRDY↓		TpC+45		(TpC-TwCL) +45		87	ns
4	TsPD (RDY)	Port Data to RDRDY ↑ Set-up Time	(2P+2W+1) TpC –25		TwCH+ (W+P) TpC –25		16		ns
5	TsPD (RDY)	Port Data to WRRDY ↓ Set-up Time in One Line Handshake	43		43		43		ns
6	ThPD (RDY)	Port Data to WRRDY↓ Hold Time in One Line Handshake	0		0		0		ns
7	TsPD (STB)	Port Data to WRSTB ↑ Set-up Time	10		10		10		ns
8	ThPD (STB)	Port Data to WRSTB↑ Hold Time	25		25		25		ns
9	TdSTB (PD)	RDSTBD ↑ to Port Data Delay Time in Bidirectional Handshake		35		35		35	ns
10	TdSTB (PHZ)	RDSTB ↑ to Port High-Z Delay Time in Bidirectional Handshake		25		25		25	ns


Note: The value in the left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.

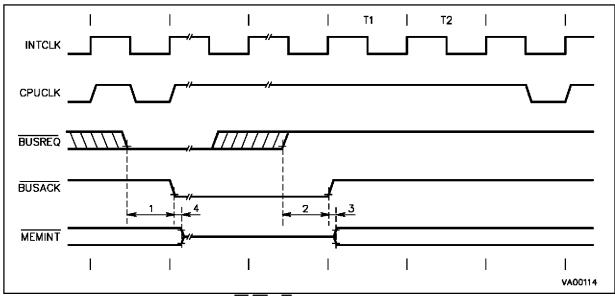
The value in the right hand two columns show the timing minimum and maximum for an external clock at 24 MHz divided by 2, prescaler value

of zero and zero wait status.

Legend:
P = Clock Prescaling Value (R235.4,3,2)
W = Programmable Wait Cycles (R252.2.1.0/5,4,3) + External Wait Cycles

HANDSHAKE TIMING

BUS REQUEST/ACKNOWLEDGE TIMING TABLE ($V_{DD}=5V\pm10\%$, $T_{A}=-40\%$ to +85%, Cload = 50pF, INTCLK = 12MHz, Push-pull output configuration, unless otherwise specified)


			Value (Note)				
N°	Symbol	Parameter	OSCIN Divided By 2	OSCIN Not Divided By 2	Min.	Max.	Unit
1	TdBR (BACK)	BREQ↓ to BUSACK↓	TpC+8	TwCL+12	50		ns
'	I TUBN (BACK)	Bridg vio Bookerv	TpC(6P+2W+7)+65	TpC(3P+W+3)+TwCL+65		360	ns
2	TdBR (BACK)	BREQ↑ to BUSACK↑	3TpC+60	TpC+TwCL+60		185	ns
3	TdBACK (BREL)	BUSACK↓ to Bus Release	20	20		20	ns
4	TdBACK (BACT)	BUSACK ↑ to Bus Active	20	20		20	ns

Note: The value left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.

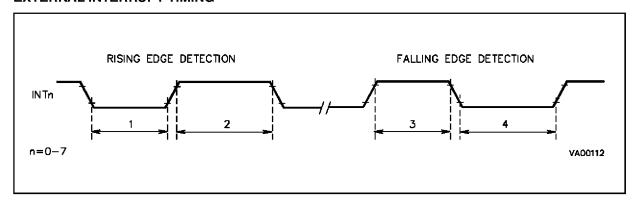
The value right hand two columns show the timing minimum and maximum for an external clock at 24MHz divided by 2, prescale value of zero

and zero wait status.

BUS REQUEST/ACKNOWLEDGE TIMING

Note: MEMINT = Group of memory interface signals: \overline{AS} , \overline{DS} , $\overline{R/W}$, P00-P07, P10-P17

EXTERNAL INTERRUPT TIMING TABLE ($V_{DD} = 5V \pm 10\%$, $T_A = -40\%$ to +85%, Cload = 50pF, INTCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

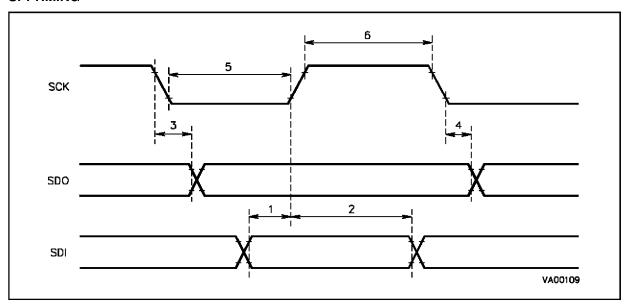

	Symbol	Parameter	Value (Note)				
N°			OSCIN Divided By 2 Min.	OSCIN Not Divided By 2 Min.	Min.	Max.	Unit
1	TwLR	Low Level Minimum Pulse Width in Rising Edge Mode	2TpC+12	TpC+12	95		ns
2	TwHR	High Level Minimum Pulse Width in Rising Edge Mode	2TpC+12	TpC+12	95		ns
3	TwHF	High Level Minimum Pulse Width in Falling Edge Mode	2TpC+12	TpC+12	95		ns
4	TwLF	Low Level Minimum Pulse Width in Falling Edge Mode	2TpC+12	TpC+12	95		ns

Note: The value left hand two columns show the formula used to calculate the timing minimum or maximum from the oscillator clock period, prescale value and number of wait cycles inserted.

The value right hand two columns show the timing minimum and maximum for an external clock at 24 MHz divided by 2, prescale value of zero

and zero wait status.

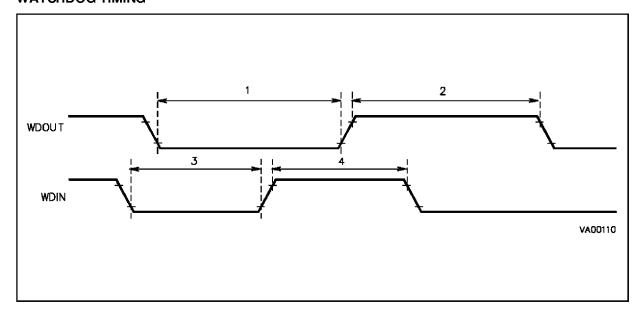
EXTERNAL INTERRUPT TIMING



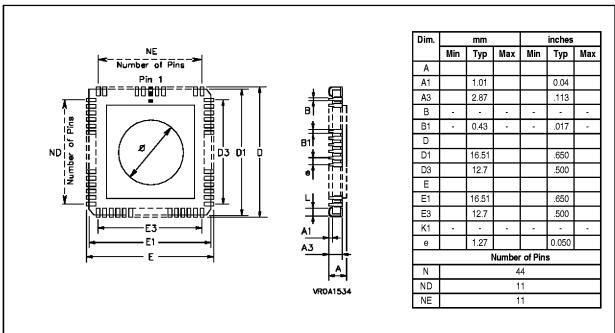
SPI TIMING TABLE ($V_{DD}=5V\pm10\%$, $T_A=-40\,^{\circ}\!C$ to +85°C, Cload = 50pF, INTCLK = 12MHz, Output Alternate Function set as Push-pull)

N°	Symbol	Parameter	Value		Unit
IN			Min.	Max.	Unit
1	TsDI	Input Data Set-up Time	100		ns
2	ThDI (1)	Input Data Hold Time	1/2 TpC+100		ns
3	TdOV	SCK to Output Data Valid		100	ns
4	ThDO	Output Data Hold Time	-20		ns
5	TwSKL	SCK Low Pulse Width	300		ns
6	TwSKH	SCK High Pulse Width	300		ns

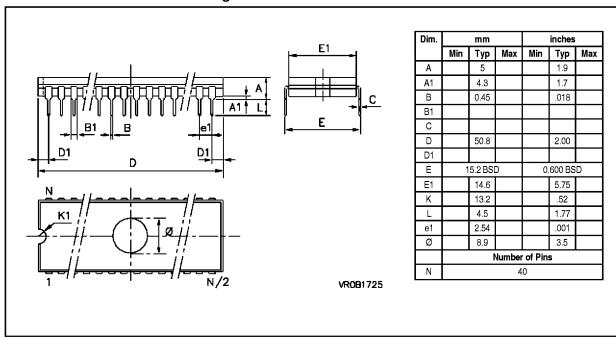
Note: 1. TpC is the OSCIN Clock period.


SPITIMING

WATCHDOG TIMING TABLE($V_{DD} = 5V \pm 10\%$, $T_A = -40\%$ to +85%, Cload = 50pF, CPUCLK = 12MHz, Push-pull output configuration, unless otherwise specified)

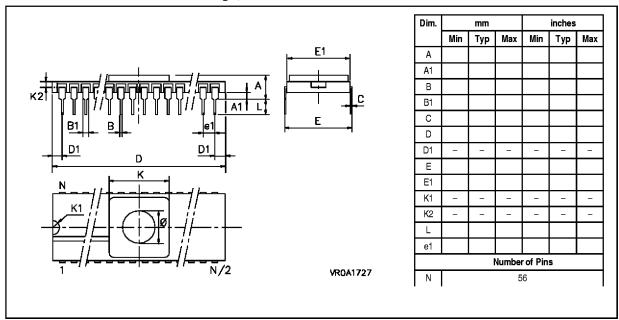

N°	Symbol	Parameter	Values		Unit
	Syllibol		Min.	Max.	Offic
1	TwWDOL	WDOUT Low Pulse Width	620		ns
2	TwWDOH	WDOUT High Pulse Width	620		ns
3	TwWDIL	WDIN High Pulse Width	350		ns
4	TwWDIH	WDIN Low Pulse Width	350		ns

WATCHDOG TIMING



PACKAGE MECHANICAL DATA

44-Pin Ceramic Leadless Chip Carrier Package with Window



40-Pin Ceramic Dual In Line Package with Window

PACKAGE MECHANICAL DATA (Continued)

56-Pin Ceramic Dual In Line Package, 600 Mil Width

ORDERING INFORMATION

Sales Type	Frequency	Temperature Range	Package
ST90E27D0		25℃	CDIP40-W
ST90E28L0	24MHz	25℃	CLCC44-W
ST90E28D0		25℃	CSDIP56-W
ST90T27B6		-40°C to + 85°C	PDIP40
ST90T28C6		-40°C to + 85°C	PLCC44
ST90T28B6		-40°C to + 85°C	PDIP56

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com